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Abstract

This paper extends the dual-hyperbolic two temperature (Numer. Heat Transfer Part A 40 (2001) 1) and hot-electron
blast (J. Exp. Theor. Phys. 88 (1999) 84) models to investigate the deformation in metal films subjected to ultrashort
laser heating. A new set of fully coupled, transient thermoelasticity equations is derived based on the assumption of
uniaxial strain but three-dimensional stress. Two potential material removal mechanisms, thermal (melting) and non-
thermal (high stress), are identified. Numerical results show that the non-thermal damage could be a dominating
mechanism in ultrashort laser-material ablation. The major driving force for the non-thermal damage is the so-called
hot-electron blast force, which is generated by non-equilibrium hot electrons. It is also found that for gold films thicker
than 200 nm, a thin layer of material near the heated surface could be removed, as experimentally observed (Opt.
Cummun. 129 (1996) 134; J. Appl. Phys. 85 (1999) 6803). On the other hand, damage could initiate from the middle
region and then extend over the entire film for a gold film of 50 nm in thickness or thinner. © 2002 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Ultrashort (femtoseconds to a few picoseconds) laser pulses can now generate optical peak powers as
high as petawatts with frequencies spanning from X-rays to T-rays (terahertz radiation). Due to the intense,
micro-scale heating in such an extremely short period of time, interactions of an ultrashort laser beam with
solid matter have demonstrated advantages over conventional lasers in physics, chemistry and biology. For
example, ultrashort lasers have a unique capability of very high precision control with minimal collateral
damage (Momma et al., 1996; Perry et al., 1999). Moreover, they can ablate practically any material with a
large material removal rate (Shirk and Molian, 1998). These distinct features are attracting worldwide
interest in the scientific research community and industry (Hopkins and Sibbett, 2000).
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The phenomena of ultrashort laser interaction with solid matter are very different from those of con-
ventional laser pulses longer than 100 ps (100 x 10~ s). For the latter, thermal energy diffuses into deeper
parts of a solid target, which reduces the energy density near the surface and broadens the energy distri-
bution as well. Because plasma expansion and the later vaporization process create a strong recoil pressure
that expels the melted material sideways, the material removed in the liquid phase creates drops on the
target surface and a “‘corona” around the entrance hole (Momma et al., 1996). Basically, conventional
laser-material removal is by thermal ablation wherein the material is locally heated to near boiling point.
For the ultrashort laser interaction, it is observed that a thin layer of material is removed from the bulk
with very little collateral damage (Momma et al., 1996; Perry et al., 1999). Plasma is produced, but hy-
drodynamic motion in the material is negligible. It is thus believed that the process of material removal is
faster than that of heat conduction in the bulk material. Nonetheless, a complete understanding of the
ultrafast laser-material ablation mechanisms is still missing.

Although numerous theories have been proposed to describe the ultrashort laser interaction with solid
matter, most of them have been focused on thermal transport. Among which, the two-step heating models
for metals (Kaganov et al., 1957; Anisimov et al., 1974; Qiu and Tien, 1992, 1993; Chen and Beraun, 2001),
the thermal wave theories for semiconductors, dielectric crystals and insulators (Joseph and Preziosi, 1989,
1990; Tzou, 1992; Ozisik and Tzou, 1994), and the dual-phase-lag model (Tzou, 1995a,b, 1997) for the
above two categories of material are well established. Recently, two review articles by Hetnarski and Ig-
naczak (1999, 2000) have summarized five non-classical approaches that include the relaxation time effects
in dynamic thermoelasticity. However, none of them is able to truly capture the important features of the
ultrafast deformation and damage as mentioned previously.

For metal films heated by an ultrashort-pulsed laser, the hot-electron blast force, which is induced by
hot-electron gas, could play an important role in the ultrafast deformation during picosecond transient.
Falkovsky and Mishchenko (1999) find that the hot-electron blast force is proportional to the gradient of
the electron-temperature squared. Due to the fact that the heat capacity of electrons is about two orders of
magnitude smaller than that of a metal lattice, the excited electrons could shoot up to a very high tem-
perature while the lattice primarily remains thermally undisturbed. Because the optical penetration (or skin)
depth of metals is very small (in sub-microns), the gradient of the electron-temperature squared could be
very sharp. This would result in a considerably large hot-electron blast force, and thereby causing severe
lattice deformation. Therefore, we believe that the hot-electron blast force can be a vital power that de-
stroys a thin layer of material near the irradiated surface before thermal energy conducts into the bulk as
experimentally observed. The other important effect on the ultrafast deformation is the classical thermal
load that results from non-uniform lattice temperature. In spite of the fact that the lattice temperature is
fairly low in the early stage of ultrashort laser-material interactions, the lattice temperature gradient could
be immense owing to the small size of thin films. Hence, the resulting thermal load could be substantial and
would compound significantly the hot-electron blast effect on the thermomechanical behavior. This is
particularly true for the late time response. Another interesting phenomenon is the strain rate effect. Be-
cause the ultrafast deformation occurs in such a short time period (sub-picoseconds to picoseconds), the
strain rate could be extremely high. Consequently, the interconvertibility of the thermal and mechanical
energy in metal lattices may not be neglected.

This work extends the dual-hyperbolic two temperature (Chen and Beraun, 2001) and hot-electron blast
(Falkovsky and Mishchenko, 1999) models to study the ultrafast thermomechanical behaviors of a metal
film subjected to femtosecond laser heating. The proposed, fully coupled thermomechanical model incor-
porates the hot-electron blast force and the classical thermal load into the momentum equations for the
lattice deformation and the thermal-mechanical coupling into the lattice energy balance equation. To
model ultrafast deformation in metal films heated locally by a uniform laser pulse, a set of one-dimensional
(1D) transient thermoelasticity equations is derived based on the assumption of uniaxial strain but 3D
stress. The time-dependent partial differential equations are solved with a central difference scheme to
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evaluate the spatial derivatives and a forward difference scheme to estimate the time derivatives. Numerical
analysis is performed with gold films ranging in thickness from 20 nm to 1.0 pum. The results, including the
electron and lattice temperatures, hot-electron blast force, velocity, and stresses in the lattice, are presented.
Two potential damage mechanisms, thermal (melting) and non-thermal (high stress), are discussed.

2. Hot-electron blast force

Recently, Falkovsky and Mishchenko (1999) have pioneered a hot-electron blast model for ultrafast
deformation in metal films based on the Boltzmann equation and the Fermi-Dirac partition function.
Because it is too difficult to solve the highly non-linear, coupled Boltzmann and thermoconductivity
equations, they simplify the problem by assuming that there is no thermal coupling between electrons and
the phonons. A dominating contribution to the hot-electron blast force that comes from the local equi-
librium partition function is thus identified. Consequently the perturbation terms in the Boltzmann
equation can be neglected. Several other simplifications are further made; however, the mathematics in-
volved in the development of the hot-electron blast force is still quite complex. Therefore the hot-electron
blast force is derived in an approximation form. For brevity, only the equations that are necessary in
describing the hot-electron blast model are given below. Readers who are interested in the model devel-
opment should refer to Falkovsky and Mishchenko (1999).

The linearly elastic equations of motion for ultrafast lattice deformation during the non-equilibrium
stage proposed by Falkovsky and Mishchenko (1999) are given as

2 2
%: “U’”"%"‘Biv i,j,m7n:1,2,3 (1)
where p is the mass density of a metal lattice, u; are the displacement components, 4;;, are the elastic
constants, x; and ¢ are the spatial coordinates and time respectively, and B; are the hot-electron blast force
components. A repeated spatial index refers to summation throughout this paper unless mentioned oth-
erwise. In powers of (7./er) up to the second order with T, and e¢r respectively denoting the electron
temperature and the Fermi energy, Falkovsky and Mishchenko (1999) showed that
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in which /;(p) represents the deformation potential with p denoting the electron momentum, vg is the
Fermi velocity, and Sk is the Fermi surface. Eq. (2) indicates that the hot-electron blast force is proportional
to the gradient of electron-temperature squared.

The energy integral of the deformation potential over the Fermi surface given by Eq. (2) can be eval-
uated for various metals provided that all the physical properties involved are known. Hence, an explicit
form for the hot-electron blast force can be derived. Whereas such an explicit expression is not available
yet, the order of magnitude of B; for noble metals has been estimated (Falkovsky and Mishchenko, 1999):

o
ax/’

B,’ = 2A[jTe A,j ~ gCeoé,»j (3)

In the above equation J;; is the Kronecker delta function, g ~ 1 is the dimensionless electron-phonon
coupling constant, and C,, is a constant characteristic in the temperature-dependent electron heat capacity
C. (Kittle, 1967),

Ce(n) = CeoTe (4)
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Because the thermal coupling between electrons and phonons as well as the thermal load resulting from
lattice temperature are excluded, the above Falkovsky and Mishchenko’s deformation model is only
suitable for the very early time response of an ultrashort laser heating.

3. Two-step heat conduction

The hot-electron blast force, which dominates the non-equilibrium lattice expansion in the early time of
an ultrashort laser-material interaction, depends upon not only the electron temperature but also the
electron-temperature gradient (see Eq. (3)). In addition, the thermal load resulting from non-uniform lattice
temperature could be another important source that compounds the lattice deformation at late times.
Therefore, an accurate description of both the electron and lattice temperature fields is needed in order to
precisely predict the ultrafast thermomechanical response.

When the transient time of thermal response from an ultrashort laser heating is comparable to or shorter
than the characteristic time in electron-to-phonon collision (sub-picoseconds to few picoseconds for met-
als), the classical Fourier diffusion law would underestimate electron temperature but overestimate the
lattice temperature before the thermal system reaches equilibrium (Chen and Beraun, 2001). To charac-
terize the non-equilibrium behaviors of the electron and lattice temperatures in metals, Kaganov et al.
(1957) first theoretically investigates the thermal coupling between electrons and phonons. Later, a phe-
nomenological parabolic two-step heat conduction model is proposed by Anisimov et al. (1974). Because
the heat conduction in metal lattices is not taken into account, the parabolic two-step model cannot ac-
curately capture the lattice temperature response, especially for the late time. On a quantum mechanical
and statistical basis, Qiu and Tien (1993) derive a more rigorous hyperbolic two-step radiation heating
model, in which the micro-scale constitutive equations for electrons are in the same form as the Cattaneo-
Vernotte thermal wave model (Tzou, 1997). Since Qiu and Tien’s model (1993) accounts for the ballistic
heat transport through electron gas, it describes better results than Anisimov et al. model (1974) for those
laser pulse durations comparable to the electron relaxation time (sub-femtoseconds to tens femtoseconds
for metals, depending on the electron and phonon temperatures). Chen and Beraun (2001) propose a dual-
hyperbolic two-temperature model, which is an extension of the Qiu and Tien’s theory (1993) by including
the relaxation behavior of and the heat conduction in phonons. Basically the two-step heating models
describe that the incident laser energy excites the electrons that are located within the skin depth. Then, a
portion of the thermal electron energy transfers to the neighboring lattice, whereas another part of the
energy diffuses, through electrons, into the deeper region of the material. Once the laser pulse passes away,
the thermal coupling between the electrons and phonons as well as the heat conductions in the electrons and
lattice continue until an equilibrium, steady state is established. For convenience, the acronym “DHTTM”
is used for the dual-hyperbolic two-temperature model (Chen and Beraun, 2001) in the following sections.

In this work, the most general two-temperature theory DHTTM is extended to model the electron and
lattice thermal transport (and the ultrafast lattice deformation) in a metal film under ultrashort laser
heating. The following is a summary of the DHTTM in the 3D form:

oTe _
Ce(Te) 6[ :_v'qe_G(Te_Ti)"'Q (5)
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ey, +4q \Y (6)
oT;
G(f) =" =~V -q+G(T. — 1) (7)
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aaql +q = —K\VT, (8)
t

where 7' denotes temperature, g is the heat flux vector, 7 is the relaxation time, C is the heat capacity, K is
the thermal conductivity, G is the electron—lattice coupling factor, Q is the volumetric laser heat source, and
V is the divergence operator. The quantities with subscripts e and 1 are associated with the electron and
lattice, respectively.

The deposition of laser energy directly affects the electron-temperature field and in turn, the hot-electron
blast force and the lattice temperature. Because ultrafast thermomechanical response strongly depends
upon the hot-electron blast force and the lattice temperature distribution, the volumetric laser heat source
should be characterized properly. In this work a flat-top laser beam (uniform intensity over the entire laser
spot) is considered. Referring to the cylindrical coordinate, a mathematical form for the volumetric laser
heat source resulting from a flat-top beam with a finite spot size is expressed as

00,2 1) =/ EL = gy e — ) exp [— (2) —ﬁ(“”"ﬂ )

T lpZs s tp

T

in which r and z are the radial and axial coordinates respectively, J, is the peak fluence (at » = z = 0) carried
by the laser pulse, 0 is the surface reflectivity, ¢, is the laser pulse duration defined as the full width of the
laser pulse at the half maximum intensity, z; is the optical penetration depth, u(r) and u(r —r,) are
Heaviside step functions, r, is the spot radius, and f = 41In(2).

As indicated in Eq. (9), the temporal profile of the laser pulses is assumed to be Gaussian. The laser beam
is applied on the front surface (z = 0) at 1 = 0, and the peak laser intensity occurs when ¢ = 2¢,. The in-
tensities at ¢t = 1.5¢, and 2.5¢,, 1.0¢, and 3.0z,, and 0.0 and 4.0z, are 50%, 6.25% and ~0.0% of the peak
value, respectively. The intensity of the volumetric laser heat source attenuates with an exponential func-
tion, exp(—z/z;), as the depth increases.

4. Ultrafast thermoelasticity model

To investigate the ultrashort laser-induced thermomechanical response, a new ultrafast thermoelasticity
model, abbreviated as UTEM, is formulated in this section. Let us consider a metal film irradiated locally
by a flat-top laser beam on the front surface. The heated spot is finite, and the size is much larger than the
film thickness. In view of the fact that ultrafast deformation takes place in a very short period of time, it is
assumed that both the thermal transport and the lattice deformation do not occur immediately in directions
normal to the thickness direction. Therefore, within the heated spot the thermal transport can be treated as
a 1D process and the mechanical response is in a state of uni-axial strain but 3D stress. As similar to the
shock waves induced by high velocity plate impact (Nicholos and Recht, 1990), the assumption of the 1D
motion in the thickness direction within the heated region is appropriate until the lateral waves reflect back
to the heated area. Since the lateral dimensions of a thin film are much larger than the film thickness, the
time, which is of interest in this study, is much shorter than the time for the lateral waves to travel to the
boundary and bounce back to interact with the 1D motion.

The state of uni-axial strain considered here is

gzz(za t) 7é 07 b = gyy = gxy = Syz =&x = 0 (10)

In this case the time rate of change of the lattice dilation & is the same as the strain rate é...
The normal stress—normal strain relations for an isotropic material thus becomes

O = Oy = A&; — (344 2u) (T — Too) (11)
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0. = (7 + 2p)ee — (30 + 2w)o( Ty — Tio) (12)

In the above two equations o;; (i = x, y, or z; no summation is applied) is the normal stress component in
the i-direction, A is the Lamé constant, p is the shear modulus, « is the thermal expansion coefficient, and T,
is a reference temperature for metal lattices. Since all shear stresses are null, the effective stress a., which is a
measurement for plastic deformation and may be used as an indicator for material failure, is simplified to

(13)
Eq. (13) shows that the effective stress is linearly proportional to the absolute value of the total strain e,.

Since the non-equilibrium lattice deformation is induced in an extremely short period of time, one may
anticipate that the time rate of change of the lattice dilation could be on the order of magnitude same as
that of the lattice temperature. For that reason, the exchange of the thermal and mechanical energy in
lattices should be accommodated. In addition, the classical thermal load that results from non-uniform
lattice temperature may not be neglected due to the fact that lattice temperature gradient over a thin film
could be considerably large even though the lattice temperature is small. To accurately describe the ul-
trafast thermomechanical response, therefore, we incorporate the classical thermal load into the hot-elec-
tron blast model (Eq. (1)) and the coupling between the volume change rate and the lattice temperature into
the lattice energy balance Eq. (7) of the DHTTM. Since the electron and lattice temperatures as well as the
lattice deformation are functions of z and ¢ only, a set of fully coupled equations for ultrafast thermo-
elasticity under the uniaxial strain condition are then derived:

0T 0ge

Oc = |Gzz - oxx| - 2/1

&2z

()%= % (1. 1) + 00z (14)
Ie%—i-qe = —Ke% (15)
am = %y Gz~ 1) - (324 2watien (16)
Tlaa—qtl-ﬂll = _Kl% (17)
o (o T~ a4 200+ 24, (1.55) (18)

In Egs. (14)—(18) g. and ¢, are the heat fluxes in the z-direction respectively, and u. is the lattice dis-
placement. Note the differences between Egs. (16) and (7) and between (18) and (1). In general, the present
UTEM is suitable for describing the entire time histories of electron and lattice temperatures as well as
mechanical responses for an ultrashort (and also longer) pulsed laser heating on metal materials.

The governing Eqgs. (14)—(18) will be solved under proper initial and boundary conditions. For sim-
plicity, the problem considered here is a metal film that is initially at rest and at a uniform temperature.
Thus, one has the following initial conditions,

Ou,(z,0)

uZ(Z, 0) =0, ot

—0, and 0u(z,0) = 0,(z,0) = 0.(,0) = 0 (19)
Te(zv 0) = Ti(Z, 0) =T (20)

In this study 7j, is set at room temperature (300 K).
During the ultrashort laser heating process, heat losses to the front and back surfaces are assumed to be
negligible (Qiu and Tien, 1992, 1993), implying that
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qe<07t) = qe(l‘a t) =0 (21)

where L is the film thickness. For the mechanical response, it is assumed that the front and back surfaces of
the film are stress free. Thus,

0.(0,8) =0.(L,t) =0 (22)

5. Thermophysical properties

In the present study, the fast-transient temperatures ranging from room temperature to the Fermi
temperature (the order of 10* K for metals) for electrons and to the melting point for the lattice are of
interest. Thermal properties of energy carriers, including both electrons and the lattice in the metal ma-
terial, will sensitively vary with temperature over a wide range in the picosecond domain. However, for
simplicity, the mechanical properties of the metal lattice, including the elastic moduli, density and thermal
expansion coefficient, will be assumed to be constant because their variations with respect to temperature
in the condition of extremely high strain rate remain unknown.

For electrons, three thermophysical properties are temperature quite sensitive: the heat capacity, re-
laxation time and thermal conductivity. Eq. (4) shows the electron heat capacity as a linear function of
electron temperature. The following is a general form for the electron thermal conductivity (Kittle, 1967)

kg Tt

K. (23)

3m,
where n, is the number density of electrons per unit volume, m, is the mass of an electron, and kg is the
Boltzmann’s constant. Eq. (23) shows that the electron thermal conductivity is linearly proportional to the
electron temperature and the relaxation time. For good conductors, the electron—electron scattering rate
Te o(= 4.T?) and the electron—phonon scattering rate 1. ,(= BT;), where 4. and B, are constant, both
contribute to the electron collision frequency. A relationship between the electron relaxation time 7, and the
electron—electron and electron—phonon scattering rates for electron temperatures that do not exceed the
Fermi temperature is given by (Wang et al., 1994)

1

- 24
AeTez +BlTi ( )

Te
For the electron temperature being higher than the Fermi temperature, the dependence of electron
temperature on . is 7.*/? (Anismov and Rethfeld, 1997). For gold, the Fermi temperature is 6.42 x 10* K
and the two constants for the scattering rates are: 4. = 1.2 x 107 K=2s7! and B, = 1.23 x 10!l K~!s~!
(Wang et al., 1994). By substituting the values of 4. and B into Eq. (24), the calculated electron relaxation
time of gold is about 27.0 fs (27.0 x 107" s) for electrons at room temperature and about 0.02 fs at the
Fermi temperature.
Neglecting the term 4.7 in Eq. (24) and substituting the result into (23) yields

k(%) o

The above equation has been widely used in the two-step heat conduction modeling. It should be noted that
this linear relationship is only adequate for low electron temperature.

Because the electron density n. depends upon the electron temperature and needs to be determined,
Eq. (23) is not in a form yet that can be directly applied in the present numerical analysis. Therefore,
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another relationship for K, that covers over a wide range of electron temperature (Anismov and Rethfeld,
1997) is considered here

P 0.16)"*(92 + 0.44)0, 26)
C T 1+ 0.092) (92 + niy)

where ¥, = T,/ Tr and ¢, = T/ Tr are the normalized electron and lattice temperatures with 7 denoting the
Fermi temperature; y and » are material constants. Two extreme cases can be derived (Anismov and
Rethfeld, 1997). For high electron temperatures 9. > 1, Eq. (26) results in the well-known dependence
K. ~ T>%, which is characteristic for low-density plasma. In the low electron-temperature limit J. < 1, Eq.
(26) reduces to the linear Eq. (25).

The temperature-dependent thermal conductivity and heat capacity of a gold lattice over the range from
room temperature to the melting point are listed in Table 1. The values in the parenthesis are the bulk heat
capacity C (Touloukian et al., 1970; Touloukian and Buyco, 1970) and C; is calculated using the rela-
tionship C = C, + C). A linear distribution is assumed for the properties between any two consecutive data
in Table 1. The other thermophysical properties involved in the UTEM, volumetric laser heat source Eq.
(9), electron heat capacity Eq. (4), and electron thermal conductivity Eq. (26) are as follows (Qiu and Tien,
1993; Anismov and Rethfeld, 1997; Tzou, 1997): Coo =70 Jm3 K2, G=2.6 x 10" Wm3 K~!, 1, = 38.7
ps, 6 =093, z, =153 nm, y = 353 Wm~' K~!, and n = 0.16. Since A.. ~ gC., with g being of the order of
unity, referring to Eq. (3), A.. ~ gCq = 70 Jm~3 K~2. The phonon relaxation time of 38.7 ps is computed
by using Eq. (1.37) in Tzou (1997). The reflectivity of 0.93 and the optical penetration depth of 15.3 nm are
the typical values for visible light. It is also noted that Eq. (26) gives K, a value of 315 Wm~' K~! at room
temperature, which is identical to the bulk material conductivity. The gold’s melting temperature is 1337 K.

In passing, note that Egs. (14) and (15) (for electrons), Egs. (16) and (17) (for phonons), and Eq. (18) (for
acoustic displacement) involve three interweaving waves. Due to the significantly different relaxation times
by orders of magnitude between 7. (on the order of femtoseconds) and 7; (on the order of picoseconds), the
thermal wave behavior in electrons (in femtoseconds) already diminishes as the thermal and mechanical
interactions take place in the picosecond domain. The wave interactions in the picosecond domain,
therefore, are only described by Egs. (16)—(18), which has been studied in detail in the wave theory of heat
conduction (Achenbach, 1968; Tzou, 1995b).

Existence and uniqueness of the solutions to Egs. (14)—(22) with constant thermomechanical properties
(Tzou, 1997) as well as the domains of influence in correspondence have been proven in the development of
the dual-phase-lag model. Dominating groups are identified in terms of two characteristic times describing
the delayed response, which, numerically, allow changes of the involved thermomechanical properties over
a wide range. In presence of the temperature-dependent thermal properties as shown in Eqgs. (14)—(17), these

Table 1

Conductivity and heat capacity of gold lattice
T (K) ki (W/mK)* G (10°Jm>K™)
300 315 2.479 (2.50)
604 2.708 (2.75)
636 271
964 246
1017 2.839 (2.91)
1100 234
1337 176
1373 2.726 (2.82)

Values in the parentheses are the bulk property (Touloukian and Buyco, 1970).
4 Touloukian et al. (1970).
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properties do vary but their instantaneous values lie within the admissible range as long as their values do
not reduce to zero. Note that the value of T; ultimately reduces to that of 7; at thermal equilibrium. The
energy exchange terms (led by G) in Egs. (14) and (16) vanish in this case and all thermal properties recover
their non-zero equilibrium values. A bifurcated solution will not exist because the diminution of the energy
exchange, both are low-order terms in Egs. (14) and (16), does not alter the characteristics of the equations.

6. Numerical results and discussion

Due to the strong non-linearity of the coupled transient equations and the temperature-dependent
thermophysical properties, it is impossible to derive closed-form solutions to the present UTEM. Therefore,
the governing Eqs. (14)—(18), together with the volumetric heat source, Eq. (9) with r, — oo, and the initial
and boundary conditions, Eqs. (19)-(22), are solved by using a central difference scheme to evaluate the
spatial derivatives and a forward difference scheme to estimate the time derivatives. Discussion on the
accuracy and stability of these schemes can be found in textbooks (Anderson et al., 1984, for example).

For wave propagation problems that are solved with a finite difference method, the numerical solutions
often exhibit spurious (V-shape) oscillation (Anderson et al., 1984; Meyers, 1994). To remove the oscil-
lation, an artificial viscosity is introduced in this work

O,
Oz

Out,
0z

dir,

Oz

II = wpVAz — p(woAz)® (27)

where #, is the velocity of a metal lattice, ¥} is the speed of sound, and the two constants ; = 0.1-0.3 and
mq = 2.0 (Meyers, 1994). Thus, the momentum Eq. (18) is modified to
%u, %u, oT,

an ot
pan = (it 2m) 5 = 34+ 2w + 24 (T§> + (28)

Local oscillations in the electron and lattice temperatures are minor. For simplicity, they are smoothed
out algebraically if occur.

Five gold films of 20, 50, 100, 200, and 1000 nm in thickness heated by laser beams having the same pulse
width #, = 100 fs are investigated. Uniform grids are employed. The corresponding numbers of the grid
points meshed are 51, 51, 101, 201, and 501, and the time increments used are 0.025, 0.05, 0.1, 0.2, and 0.2
fs, respectively. The mechanical properties are: p = 1.93 x 10* kg/m’, E =749 GPa, v=0.42, and
o= 14.2 x 107 m/m (Trent et al., 1972). The value of w, is set to be 0.1 for the first two films and 0.3 for the
rest. Numerical results, including the electron and lattice temperatures, hot-electron blast force, velocity,
and thermal stresses, are presented and discussed in the following.

Fig. 1 shows the time histories of the electron and lattice temperatures at the front surface of a 1.0 um
gold film subjected to the laser heating at J, = 7147 J/m>. Two solutions, obtained from the thermal model
DHTTM and the present thermomechanical model UTEM, are shown in the figure although they seem
indistinguishable. The fluence J, applied here is the melting threshold predicted from the DHTTM. At this
level of J,, the maximum lattice temperature obtained from the DHTTM occurs at the front surface and is
equal to the melting point. Because it just starts to melt, the value of the fluence is referred as the melting
threshold (Wellershoff et al., 1999). It is clearly seen from Fig. 1 that the early stage of ultrafast laser heating
is a non-equilibrium process, i.e., a state that the electron and lattice temperatures diverge significantly. The
maximum electron temperatures calculated from the two models are almost identical, 2.681 x 10* K, and
occurs at almost the same time, ¢ = 0.284 ps (shortly after the laser pulse passes its peak irradiance, at
t = 0.2 ps). At this time instant, the computed lattice temperatures are already slightly different, 332.0 K by
the DHTTM versus 331.1 K by the UTEM. Owing to the high strain-rate effect, a significant difference of
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Fig. 1. Time histories of the electron and lattice temperatures at the front surface of a 1.0 um gold film heated by a laser pulse with
t, = 100 fs and J, = 7147 J/m?.

the maximum lattice temperature between the two models is anticipated. They are found to be 1337 K
occurring at about ¢t = 15.80 ps for the DHTTM and 1249 K occurring at about ¢ = 15.18 ps for the
UTEM. Further UTEM analysis yields another value of 7790 J/m? for the melting threshold, about 9.0 %
higher than that obtained from the DHTTM.

The results in Figs. 2-10 are calculated for the 1.0 pm film heated by the laser pulse at the melting
threshold J, = 7790 J/m?. Fig. 2 depicts the electron-temperature distribution over the first half of the
domain (z = 0-500 nm). It appears that both the electron temperature and the electron-temperature gra-
dient increase rapidly before the temperature reaches the maximum value, 2.809 x 10* K, at approximately
t = 0.284 ps and then decrease at a slower rate as time prolongs. The lattice temperature distribution is
plotted in Fig. 3. Contrast to the electron temperature, the lattice temperature rises much slower due to the
fact that the heat capacity of the gold lattice is about two orders of magnitude larger than that of the
electrons. The lattice temperature reaches the melting point at a later time, around ¢ = 15.91 ps.

The hot-electron blast force is presented in Fig. 4. Apparently, the hot-electron blast force develops
rapidly in a small region near the irradiated surface and quickly reaches the maximum value, —2.281 x 108
N/m3, at about ¢ = 0.271 ps (slightly earlier than the time when the maximum electron temperature occurs,

Electron temp. (10° K)

Length z (nm)

Fig. 2. Electron-temperature distribution in the first half of a 1.0 pm gold film heated by a laser pulse with #, = 100 fs and J, =
7790 J/m?2,
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Fig. 3. Lattice temperature distribution in a 1.0 pm gold film heated by a laser pulse with #, = 100 fs and J, = 7790 J/m?.
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Fig. 4. Hot-electron blast force in the first fifth of a 1.0 pm gold film heated by a laser pulse with ¢, = 100 fs and J, = 7790 J/m>.

see Fig. 2). During this extremely short period of time, the peaks of the force occur at the same location
z = 6.0 nm, recalling that the optical penetration depth is 13.5 nm. As time increases, the force decreases
swiftly and the peak shifts deeper inside the film. When ¢ = 2.0 ps, for instance, the peak moves to the
location z = 22.0 nm and the magnitude reduces to —0.430 x 10'® N/m3. Development and transient of the
hot-electron blast force can be elucidated by the electron-temperature distribution. According to Eq. (3),
the blast force is proportional to the product of the temperature and the temperature gradient in the
electron gas. As a result of the zero slope of the electron temperature at z = 0 and L (the boundary con-
ditions of no heat loss), the force should vanish at both boundaries in spite of the fact that the maximum
electron temperature occurs at the front surface. Hence, the peak of the hot-electron blast force must
appear somewhere inside the film as shown in Fig. 4. The hasty rising and diminishing of the hot-electron
blast force is in good correspondence with the swift response of the electron temperature.

Figs. 5 and 6 illustrate the thermal stress ¢.. computed with and without the hot-electron blast effect
respectively. For clarity, only the results in the first fifth of the film (z = 0-200 nm) are presented here.
Emphasis is placed on the response in the region of 0-50 nm. The difference of the stress responses in this
localized area reveals the pronounced impact of the hot-electron blast force on the ultrafast deformation. It
is also noted that the artificial viscosity suppresses the spurious oscillation in the stress (dashed lines with
dots), which is calculated without the artificial viscosity. Fig. 7 shows the stress component o,.(= 0,,) for



3210 J.K. Chen et al. | International Journal of Solids and Structures 39 (2002) 3199-3216

G,, (GPa)

With viscosity
-6 10.0 ps -s—e—e- Without viscosity
5.0ps
'8 n 1 L L 1
0 40 80 120 160 200

Length z (nm)

Fig. 5. Stress o.. in the first fifth of a 1.0 pm gold film heated by a laser pulse with ¢, = 100 fs and J, = 7790 J/m?.
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Fig. 6. Stress o.. in the first fifth of a 1.0 pm gold film heated by a laser pulse with £, = 100 fs and J, = 7790 J/m?, calculated without the
electron blast effect.
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Fig. 7. Stress o, in the first fifth of a 1.0 pm gold film heated by a laser pulse with #, = 100 fs and J, = 7790 J/m?.
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the case with the hot-electron blast effect. Interestingly, the distribution of o, is similar to that of o, except
that o, is zero at z = 0 in Fig. 5. With the stress free boundary condition for ¢.,, Eq. (12) gives the total
strain ¢, at z=0 and L as

(37 + 20T — T)

L= (29)
Substitution of Eq. (29) into (11) results in
2u(32+2 T — T
Oyy = O-y,\r = — ,U(3 + ,LL)O(( ! ! ) (30)

A+2u

The above equation indicates that the two stress components o, and o,, at the boundary are only functions
of the lattice temperature. Since i > Tj, for ¢ > 0 considered in this study, both o, and o,, are always
compressive. At t = 5.0 ps, for example, the calculated lattice temperature at z = 0 is 1013 K and the stress
0w(= 0,,) 1s 1.30 GPa, which is in excellent agreement with the value computed by directly substituting the
lattice temperature into Eq. (30). A similar comparison of o, (and g,,) with o, is also found for the case
without the hot-electron blast effect.

Due to the 3D stress nature, the effective stress . may be a useful parameter for the material damage
assessment. It is thus computed and shown in Fig. 8 for several time instants. Again, only the results over a
portion of the domain z = 0-100 nm are demonstrated here for clarity. It is evident, due to the significant
difference between the stress magnitudes found in Figs. 5 and 8, that use of the effective stress o, or a single
stress o, for the failure prediction would result in a very different conclusion of the damage. Fig. 9 rep-
resents the effective stress computed without the hot-electron blast force. It is interesting to compare the
results in Figs. 8 and 9. The two effective stresses at the front surface are close but not identical. For in-
stance, the values at # = 10 ps are 1.755 and 1.781 GPa for the cases with and without the hot-electron blast
force, respectively. The difference could be attributed to the different lattice temperatures due to the dif-
ferent strain rates. This conjecture is verified by Eq. (30) with the corresponding lattice temperatures, 1263
and 1278 K.

As the effective stress is an indicator for damage, the velocity v, in Fig. 10 provides useful information for
whether the damaged material would be removed from or stay with the bulk material. The negative value of
the velocity means that material moves along the —z-direction. Assume that the failure strength of gold is
temperature- and rate-independent and equals that at room temperature, 1.24 GPa (Trent et al., 1972). By
comparing the effective stress in Figs. 8 and 9 with the failure strength respectively, a first-order approx-
imation of the damage length, for # = 10 ps for example, is about 21 nm for the case with the hot-electron

24

Go (GPa)

Length z (nm)

Fig. 8. Effective stress g, in the first tenth of a 1.0 pm gold film heated by a laser pulse with #, = 100 fs and J, = 7790 J/m?.
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Fig. 9. Effective stress g, in the first tenth of a 1.0 pm gold film heated by a laser pulse with #, = 100 fs and J, = 7790 J/m?, calculated
without the electron blast effect.
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Fig. 10. Velocity v. in the first tenth of a 1.0 pm gold film heated by a laser pulse with #, = 100 fs and J, = 7790 J/m>.

blast effect and about 18 nm for the case without the blast effect. As suggested by the negative velocity in
Fig. 10, any damaged material would be removed immediately from the bulk by that speed. Recalls that the
predicted time for the onset of thermal melting at the front surface is about 15.91 ps. These results imply
that non-thermal damage could occur before the material melts.

In reality, the ultrashort laser ablation is a continuous process even though it takes place in such a short
period of time. Once a piece of material is damaged and removed, the thermal energy associated with the
removed material, which must be a fairly large portion of the total energy that is absorbed by the film, is
also removed. As a result, there might not be enough energy left to raise the lattice temperature to the
melting point. In other words, thermal melting could never happen. If this is true, non-thermal damage
from high stress would be the material ablation mechanism for a 1.0 um film heated by a 100 fs laser pulse
at the melting threshold fluence. Thus, the above argument can explain the experimental observation: (a) a
thin layer of material is removed from the bulk material with minimal collateral thermal damage and
(b) hydrodynamic motion is negligible (Momma et al., 1996; Perry et al., 1999).

Since the hot-electron blast force increases with laser fluence, a value of J, = 38,949 J/m?, five times the
melting threshold, is investigated. At this fluence level, the theoretical maximum electron temperature in-
creases to 6.424 x 10* K (close to the Fermi temperature 6.42 x 10* K), and the maximum hot-electron
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blast force becomes —12.39 x 10'8 N/m?3. For the lattice, the onset of thermal melting is at approximately
t = 2.44 ps. Comparison of the data with those in the previous case of J, = 7790 J/m? shows that a five-time
fluence boosts the electron temperature by 2.29 times and the hot-electron blast force by 5.43 times but
shortens the onset time of thermal melting by 6.52 times. The effective stress distributions resulting from
this higher fluence are displayed in Figs. 11 and 12 for the time instants z = 0.5, 1.0, 1.5, 2.0, and 2.5 ps.
Again, one of our interests is to examine the hot-electron blast effect. Fig. 12 shows that the computed
effective stress is localized in the region very near the irradiated surface when the hot-electron blast force is
neglected. This is because the interaction time is so short that heat scarcely conducts into the deeper part of
the lattice. Like the lower fluence case, Fig. 12 gives the first-order approximation of the damage length
only one (1) nm at ¢ = 2.0 ps, for example. For the case with the hot-electron blast effect, on the other hand,
there are two areas in which damage could occur. One is in the region of z = 0-10 nm, and the other is in
the region around z = 30 nm. The first-order approximation of the damage length at + = 2.0 ps is about
9 nm for this case. It is also seen in Fig. 11 that at t =2.5 ps, the peak stress in the region around
30 nm exceeds the strength 1.24 GPa. Because material is hardly removed if the hot-electron blast effect
is excluded, thermal melting at the later time would be the dominating damage mechanism. Should this be
the case, hydrodynamic motion will occur. This, then, contradicts to the experimental observations

Ge (GPa)

Length z (nm)

Fig. 11. Effective stress o, in the first twentieth of a 1.0 pm gold film heated by a laser pulse with #, = 100 fs and J, = 38,949 J/m?.
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Fig. 12. Effective stress o in the first twentieth of a 1.0 pm gold film heated by a laser pulse with #, = 100 fs and J, = 38,949 J/m?,
calculated without the electron blast effect.
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(Momma et al., 1996; Perry et al., 1999). A similar conclusion to the 1.0 pm film case is found for a thinner,
200 nm gold film. For brevity, those results are not presented here.

Fig. 13 plots the effective stress as a function of z for a 100 nm film irradiated by the laser pulse at the
melting threshold J, = 4442 J/m?. The onset of thermal melting in this case occurs at approximately
t = 29.3 ps. As expected, the thermal model DHTTM predicts a lower melting threshold, 4133 J/m?. It is
worth noting that the magnitude of the effective stress in the rear region of the 100 nm film is quite different
from those found in the thicker films. Clearly, the magnitudes of the effective stress in the two regions near
the front and rear surfaces are comparable. This implies that non-thermal damage from the back surface is
also possible if the laser is intense enough.

Further numerical analysis shows that the hot-electron blast effect on the ultrafast deformation is less
pronounced for a 50 nm gold film than for the thicker films. This is evidenced in Fig. 14 by the slight
difference between the two effective stresses computed with (solid lines) and without (dashed lines) the hot-
electron blast force. The fluence used in the two calculations is 2215 J/m?, which is the melting threshold
obtained from UTEM. The onset of thermal melting is found at about ¢t = 45.3 ps for this thinner film. It is
clearly shown in Fig. 14 that the peak stress at the two boundaries occurring at ¢t = 5 and 10 ps are below
the strength (12.4 GPa). As time increases, the stress peak rapidly shifts to the middle region and reaches
the maximum at approximately ¢ = 23 ps. From ¢ = 13 to 23 ps, the effective stress in the entire film exceeds

Ge (GPa)
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Fig. 13. Effective stress o, as a function of z for a 100 nm gold film heated by a laser pulse with 7, = 100 fs and J, = 4442 J/m?.
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Fig. 14. Effective stress o, as a function of z for a 50 nm gold film heated by a laser pulse with £, = 100 fs and J, = 2215 J/m’.
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the failure strength. It is thus likely that for a 50 nm film heated by a 100 fs laser at the melting threshold
fluence, non-thermal damage could initiate from the middle region and then extend to the whole film.
However, it is also possible that damage first occurs in the regions near both the front and back surfaces if
the laser intensity is intense enough, for instance, five times of the melting threshold. Similar damage sit-
uations are found for a further thinner, 20 nm film except that the peak stress occurs in the middle region
earlier. Over again, those results are not presented for brevity.

It should be pointed out here that the physics involved in the ultrashort laser-material ablation process
are complex and are not fully understood yet. The present work is a first attempt to identify the material
damage mechanisms in this very complicated problem based on the dynamic thermomechanics. As we have
found from this study, the strain rate is extremely high, on the order of 10° s~!. Under such a high strain
rate, it is very likely that metal materials would lessen its ductility and become more brittle. Furthermore,
the embrittlement could alter the elastic limit. This is an interesting research subject though it has not been
explored yet. The reason for assuming linear elasticity in this paper is primarily because of the lack of
material data for such a harsh environment and also for mathematical simplicity. It should be reminded
that the material damage and removal mechanisms addressed in this study are qualitative and need a
further justification. As manufacturing technology progresses into the nano-scale era, interests and in-
vestigations in this area are expected in the future.

7. Conclusions

Ultrafast deformation in metal films heated by an ultrashort laser pulse is a highly non-equilibrium
behavior. Unlike conventional dynamic thermoelasticity, the hot-electron blast force, which is generated by
hot-electron gas, could play a crucial role in the lattice deformation. The other important factor is the
thermal load that results from the temperature gradient in a metal lattice. Since the strain rate is extremely
high, on the magnitude of 10° s~!, the coupling between the thermal and mechanical energy in the lattice is
also of very importance.

To investigate the thermomechanical response of metal films subjected to ultrashort-pulsed laser heating,
this work incorporates the thermal load into the hot-electron blast model (Falkovsky and Mishchenko,
1999) and the coupling between the thermal and mechanical energy into the DHTTM (Chen and Beraun,
2001). A set of fully coupled, transient thermoelasticity equations is derived based on the condition of
uniaxial strain but with 3D stress. The governing equations, together with the volumetric laser heat source
and the initial and boundary conditions, are solved with a central difference scheme to estimate the spatial
derivatives and a forward difference scheme to estimate the temporal derivatives. To suppress the spurious
oscillation in thermal stresses caused from the finite difference method, an artificial viscosity is introduced.

Numerical analysis is performed with five gold films ranging in thickness from 20 nm to 1.0 um. The
laser pulse length is assumed to be #, = 100 fs; the fluences that are equal to or beyond the melting threshold
are considered. No mechanical constraint is imposed to the films. The numerical results show that the
maximum hot-electron blast force is induced shortly after the laser pulse passes the peak irradiance. The
impact of the hot-electron blast effect on the ultrafast lattice deformation is more pronounced for thicker
films than for thinner films. Two potential material damage mechanisms, thermal (melting) and non-
thermal (high-stress), are identified based on the effective stress criterion. For gold films thicker than 200
nm, non-thermal damage in a small region near the irradiated surface could be the dominating ablation
mechanism. Neglecting the hot-electron blast effect could underestimate the potential of the non-thermal
damage, especially for intensive laser pulses. For thinner films of 50 nm in thickness and less, an entire film
could be destroyed before thermal melting takes place. Location of the damage initiation, either in the
middle region or from the boundary, depends upon the laser intensity. In between the two categories, a 100
nm film for example, non-thermal damage could occur in the regions near the front and back surfaces.



3216 J.K. Chen et al. | International Journal of Solids and Structures 39 (2002) 3199-3216

This study provides an explanation about how the material in a gold film is damaged and removed by
ultrashort laser pulses based on the thermomechanics approach. Because no stress—strain data is available
for the material at extremely high strain rates, the damage assessed here is qualitative and subject to further
justification. As manufacturing technology progresses into the nano-scale era, characterization of the
temperature- and rate-dependent stress—strain behaviors at the strain rate of order 10° s~! is needed.
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